Data Mining (DM) adalah salah satu bidang yang berkembang pesat karena besarnya kebutuhan akan nilai tambah dari database skala besar yang makin banyak terakumulasi sejalan dengan pertumbuhan teknologi informasi. Definisi umum dari DM itu sendiri adalah serangkaian proses untuk menggali nilai tambah berupa pengetahuan yang selama ini tidak diketahui secara manual dari suatu kumpulan data.
Perkembangan data mining(DM) yang pesat tidak dapat lepas dari perkembangan teknologi informasi yang memungkinkan data dalam jumlah besar terakumulasi. Sebagai contoh, toko swalayan merekam setiap penjualan barang dengan memakai alat POS(point of sales). Database data penjualan tsb. bisa mencapai beberapa GB setiap harinya untuk sebuah jaringan toko swalayan berskala nasional. Perkembangan internet juga punya andil cukup besar dalam akumulasi data.
Tetapi pertumbuhan yang pesat dari akumulasi data itu telah menciptakan kondisi yang sering disebut sebagai “rich of data but poor of information” karena data yang terkumpul itu tidak dapat digunakan untuk aplikasi yang berguna. Tidak jarang kumpulan data itu dibiarkan begitu saja seakan-akan “kuburan data”.
DM adalah serangkaian proses untuk menggali nilai tambah dari suatu kumpulan data berupa pengetahuan yang selama ini tidak diketahui secara manual. Patut diingat bahwa kata mining sendiri berarti usaha untuk mendapatkan sedikit barang berharga dari sejumlah besar material dasar. Karena itu DM sebenarnya memiliki akar yang panjang dari bidang ilmu seperti kecerdasan buatan (artificial intelligent), machine learning, statistik dan database. Beberapa teknik yang sering disebut-sebut dalam literatur DM antara lain : clustering, classification, association rule mining, neural network, genetic algorithm dan lain-lain.
Yang membedakan persepsi terhadap DM adalah perkembangan teknik-teknik DM untuk aplikasi pada database skala besar. Sebelum populernya DM, teknik-teknik tersebut hanya dapat dipakai untuk data skala kecil saja.
Tahap-Tahap Data Mining
Karena DM adalah suatu rangkaian proses, DM dapat dibagi menjadi beberapa tahap:
1. Pembersihan data (untuk membuang data yang tidak konsisten dan noise)
2. Integrasi data (penggabungan data dari beberapa sumber)
3. Transformasi data (data diubah menjadi bentuk yang sesuai untuk di-mining)
4. Aplikasi teknik DM
5. Evaluasi pola yang ditemukan (untuk menemukan yang menarik/bernilai)
6. Presentasi pengetahuan (dengan teknik visualisasi).
Teknik-Teknik Data Mining
Dengan definisi DM yang luas, ada banyak jenis teknik analisa yang dapat digolongkan dalam DM. Karena keterbatasan tempat, disini penulis akan memberikan sedikit gambaran tentang tiga teknik DM yang paling populer :
1. Association Rule Mining
Association rule mining adalah teknik mining untuk menemukan aturan assosiatif antara suatu kombinasi item. Contoh dari aturan assosiatif dari analisa pembelian di suatu pasar swalayan adalah bisa diketahui berapa besar kemungkinan seorang pelanggan membeli roti bersamaan dengan susu. Dengan pengetahuan tsb. pemilik pasar swalayan dapat mengatur penempatan barangnya atau merancang kampanye pemasaran dengan memakai kupon diskon untuk kombinasi barang tertentu. Penting tidaknya suatu aturan assosiatif dapat diketahui dengan dua parameter, support yaitu persentase kombinasi item tsb. dalam database dan confidence yaitu kuatnya hubungan antar item dalam aturan assosiatif. Algoritma yang paling populer dikenal sebagai Apriori dengan paradigma generate and test, yaitu pembuatan kandidat kombinasi item yang mungkin berdasar aturan tertentu lalu diuji apakah kombinasi item tsb memenuhi syarat support minimum. Kombinasi item yang memenuhi syarat tsb. disebut frequent itemset, yang nantinya dipakai untuk membuat aturan-aturan yang memenuhi syarat confidence minimum[1]. Algoritma baru yang lebih efisien bernama FP-Tree[5].
2. Classification
Classification adalah proses untuk menemukan model atau fungsi yang menjelaskan atau membedakan konsep atau kelas data, dengan tujuan untuk dapat memperkirakan kelas dari suatu objek yang labelnya tidak diketahui. Model itu sendiri bisa berupa aturan “jika-maka”, berupa decision tree, formula matematis atau neural network.
Decision tree adalah salah satu metode classification yang paling populer karena mudah untuk diinterpretasi oleh manusia.
3. Clustering
Berbeda dengan association rule mining dan classification dimana kelas data telah ditentukan sebelumnya, clustering melakukan pengelompokan data tanpa berdasarkan kelas data tertentu. Bahkan clustering dapat dipakai untuk memberikan label pada kelas data yang belum diketahui itu. Karena itu clustering sering digolongkan sebagai metode unsupervised learning. Prinsip dari clustering adalah memaksimalkan kesamaan antar anggota satu kelas dan meminimumkan kesamaan antar kelas/cluster. Clustering dapat dilakukan pada data yang memiliki beberapa atribut yang dipetakan sebagai ruang multidimensi. Ilustrasi dari clustering dapat dinyatakan dengan bidang dua dimensi, dari pelanggan suatu toko dapat dikelompokkan menjadi beberapa cluster dengan pusat cluster ditunjukkan oleh tanda positif (+).
Tidak ada komentar:
Posting Komentar